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Summary

An elastic bar of asymmetric cross-section is supported at two points and loaded by constant gravity force and
axial force. The principal bending moments are assumed to be proportional to the principal curvatures, and the
torque proportional to the twist. The equations of motion reduce to the sine-Gordon equation. The solutions
corresponding to one soliton and to the collision of two solitons are given.

1. Basic formulae

Consider an elastic bar of asymmetric cross-section (Fig. 1). In the fixed coordinate system
(x, y, z) the position of each cross-section z is defined by two displacement components

Figure 1. Coordinate system, displacements u, v and rotation angle ¢ of elastic bar.
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Figure 2. Forces acting on the bar, y = gravity, T = axial force.

u=u(z,t), v=0(z,t) and the rotation angle ¢ = ¢(z, ¢). The bar is supported at two
points z=0 and z =1/, where u=0v=0. The displacement is assumed to be small as
compared with the distance /.

On the bar there acts the constant gravity force y (per unit length) in the x-direction
and the (almost) constant axial force T (Fig. 2). The bar possesses an infinite set of
equivalent equilibrium positions corresponding to ¢ =0, 27, 47,... and another set of
(unstable) equilibrium positions corresponding to ¢ =&, 37, Sw,.... This fact suggests
that along the string a solitary wave may propagate. Note that, besides these trivial
equilibrium configurations, the bar posseses an infinite set of essentially different non-triv-
ial equilibrium configurations corresponding to ¢ =0 at x=0 and ¢ =7, 27, 37,... at
x =1

A description of the solitary wave is already provided by an engineering approach.
Assume that the axial deformation is negligible, and that the principal bending moments
M, and M, are proportional to the principal curvatures k;; and «;,

M= —ElLiky, My = ElL K, (L.1)

where I}, I}; are the principal moments of inertia and E is Young’s modulus. The twisting
moment M is assumed to be proportional to the twist

M=Kk, K= -constant. (1.2)

Because the displacements are small, the calculations may be based on the approximate
formulae

0%u 0% dp
xx—ﬁ', Ky—gz—z‘, K—E, (13)

Ky=K,COS @+ K sin @, K;p= —K,Sin @+ k_cos . 1.4
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2. Equations of motion
The equations of motion will be derived from the Lagrange function
L=E,—E, (2.1)

where E, is the kinetic and E, the potential energy of the bar. Denoting by m the mass
density (per unit length) we have

E,=3m(i* +0*) +3m(I + I;) ¢, (2.2)

E,= %E(lelz1 + qulz) +31Kk? —yu+31T(u? + v'?). (2.3)

The last two terms in E, represent the energy of the external forces, y and 7. Differentia-
tion with respect to time has been denoted by a dot and differentiation with respect to z
by a prime. The formulae (1.1)—(1.4) lead to the following expression for L:

L=%E[II(—u” sin @ + v cos @)’ + I, (u" cos ¢ + v” sin qo)z]
+ 3K —yu+3T(u? +v'?) —im (i + 0*) = dm(I; + I;) ¢°. (2.4)

The Lagrange function L depends on the second derivatives of u, v, ¢; therefore the
equations of motion are

9L 9 3L 93 oL 9% dL 9% aL

9g 0t 97 9:9q @ a2 04 92 9"

- 0. (2.5)

Taking in turn ¢ = u, ¢ = v, and g = ¢, and neglecting the products of the derivatives of ¢
and u and of ¢ and v (e.g. u'p, O¢,...) the following system of equations is obtained

—2E(L+I)u' +3E(I = 1) (4" cos 29 + o'V sin 2¢) + Tu” + y = mii,
—2E(L+ I) o'+ 3E(I, = I,) (4" sin 29 — v'¥ cos 2¢) + Tv" = m#, (2.6)

E(I,—I;))(u” cos o+ v” sin)(—u” sinp+v" cos @)+ Ko” =m(I; + I;;) .
Note that
Y =
u=—==z(z-1), v=0, (2.6)

satisfy the equations (2.6), , and the boundary conditions u=v =0 on z =0, /. The third
equation (2.6), for the above «, v leads to the nonlinear equation

2
Kq)”—m(II+III)¢=E(II—Iu)%sinq;cos P. (2.8)
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Figure 3. Statics of heavy chain on a sinusoidal surface 4 = k sin w.

Figure 4. Heavy chain on sinusoidal surface.
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In terms of the new variables

E(II_III) Y E(II—IH) Y
:=V————— =N =, =20, 2.9
¢ K T ! m(II+III) T © ¥ ( )

the equation (2.8) reads

— —— =sino. (2.10)

There exists a large literature concerning the sine-Gordon equation (2.10). Among others
this equation describes the purely geometrical problem of bending of an inextensible
surface of constant negative curvature. Very important for the visualisation of the
solutions in the fact that (2.10) describes the dynamics of a heavy chain on a smooth
sinusoidal surface (Figs. 3 and 4),

h=h,sin . (2.11)

3. Solutions

Introducing new variables
2a=§{-1, 2B=§¢+7, (3.1)

the equation (2.10) may be written in the form

82
W=Sin w. (32)
If
w0, =0((7)=0(a+B8, —a+8)=Y(a, B), (3.3)

is a solution, then

. E—cT T—c§ |\ a
w0, = ® \/1——7’\/1*—7)_?(6’63)’ (3.4)

is a solution, too. The function w, is the Lie transform of w,. The Lie transform allows us
to obtain the dynamic solution w,(§, 7) from the static one w, = w ().
Another solution is

wy,=®(7, &)+ 7. (3.5)

The function w, is the #-transform of w;. It allows us to obtain the supersonic solution
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Figure 5. Solitary wave, Eqn. (3.6).
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Figure 6. Collision of two solitons, Eqn. (3.7).
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w, = ®(cr — §) from the subsonic solution w, = ®(7 —c§), c < 1.

The system of first order partial differential equations allows us to obtain the function
wy(§, 7), i.e. the Backlund transform of w,. A full description of the problem is given in
[1]. A large number of exact solutions to (2.10) is known. Among others there exists the
solution called the solitary wave

E—cr

V1—¢? ’

The solution has been shown in Fig. 5. The right end of the chain is situated in the valley
w =2 and the left end in the valley w =0. The deformed region is localised near the
point £ = cr. The distance from the supports has almost no influence on the wave profile.
No force can remove in a finite time the far ends from the valleys, and in this sense the
solution (3.6) preserves its identity.

The function

w=4 arctg C exp C = const, ¢ = const. (3.6)

§

1-¢?
cT ’

cosh

w=4arctg ¢ ¢ = const. (3.7)
sinh

1-¢?

is an exact solution, too. For three subsequent times it has been shown in Fig. 6. It
represents the collision of two solitons. After the collision the waves regain their initial
form. Note that in accord with (2.9);, to w =0, 2« (valleys) there corresponds ¢ =0, 7,
and to w = 7 (crest) there corresponds @ = 7 /2.
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